SciNOvA: A Measurement of Neutrino-Nucleus Scattering in a Narrow-Band Beam

Outline: - overview - experiment - science case: - v scattering physics - NOvA oscillations **NOvA Near Detector** - status - summary R. Tayloe, Indiana U. SBNW11

FNAL, 5/11

Neutrino scattering measurements

In order to understand v oscillations, it is crucial to understand the detailed physics of v scattering (at 1-10 GeV)

- for NOvA as well as other experiments: MiniBooNE, T2K, LBNE
- especially for *precision* (e.g. 1%) measurements.

Requires: Precise measurements to enable a complete theory valid over wide range of variables (reaction channel, energy, final state kinematics, nucleus, etc)

A significant challenge with neutrino experiments:

- non-monoenergetic beams
- large backgrounds
- nuclear scattering (bound nucleons)

SciNOvA, with narrow-band, 2 GeV, v and \overline{v} beams, would be ideally suited to contribute significantly.

D. Schmitz, nufact'09

Overview

SciNOvA:

Build a SciBar detector using an existing and proven design (from KEK/SciBooNE), deploy in front of the NOvA near detector in the NuMI off-axis, 2 GeV, narrow-band beam.

A fine-grained SciBar detetor in this location will provide:

- important and unique v scattering measurements including
 - a test of recent MiniBooNE results indicating anomalously large cross section in charged-current quasielastic scattering using a different v source at slightly higher E,
 - Neutral-current differential cross sections, NC π^0 , NC γ crucial for $\nu_{_{\rm P}}$ appearance
- significant cross checks of NOvA v oscillation backgrounds

SciNOvA detector

- 15k-channel solid scintillator SciBar detector in front of NOvA near detector
 - no cavern changes required, slight modifications to detector support structure
- (FNAL-made) scintillator extrusions (1.3cmx2.5cm), same design as existing SciBar
- 1.5mm WLS fibers into 64 anode PMTS
- readout system based on existing (and running) design (IU IRM modules)

SciNOvA detector

- (proposed) readout electronics:
Integrated Readout Modules (IRMs) running now on "SciBath" detector at IU

IRM with attached PMT

Scibath detector:

- WLS fiber/liquid scintillator (`100kg) for n/v
- 12 64anode PMTs, 768 channels total
- testbeam run in MINOS this fall

Narrow band beam

- ~2 GeV mean energy,
- lower energy and smaller energy spread than on-axis flux
- complementary to the NUMI on-axis cross section program

Event rates

- High event rates in SciNOvA allowing measurements with excellent statistical precision.
- Compare to MiniBooNE CCQE sample of ~150k events collected over 3yrs in 800ton detector.
- ~equivalent event sample collected in ~1 year with finegrained detector

SciNOvA v kevent/yr (6E20POT) in 10 ton fiducial vol

	Charged-current	Neutral-current
elastic	220	86
resonant	327	115
DIS	289	96
coherent	8	5
total	845	302
$\nu + A \to \pi^0 + X$	204	106

CCQE scattering

MiniBooNE has recently pub'd results on various ν_{μ} scattering channels, eg:

- CCQE, NC elastic, CCπ⁺, CCπ⁰
- In this data, (as well as for a few other experiments) the flux-averaged cross sections are O(30%) larger than state-of-art neutrino generator (with fermi-gas impulse approximation) predictions

In particular, for the CCQE process.

This observation needs to be understood with additional measurements.

SciNOvA can provide this at 2GeV

complementary to MINERvA

MiniBooNE $\nu_{_{\mu}}$ CCQE differential cross section

MiniBooNE $\nu_{_{\parallel}}$ CCQE total cross section

CCQE scattering measurement

Estimated errors on SciNOvA CCQE total cross section measurement

- estimated with bootstrapping from MiniBooNE error analysis
- checked by predicting actual MiniBooNE errors
- dominant background is CCπ feeddown from high "true" $\mathsf{E}_{_{\!\!\scriptscriptstyle \mathrm{V}}}$ to lower recon'd E, due to lost pion (in detector medium or nucleus)
- resulting error at 2 GeV (flux-peak of NOvA beam) is 12%
- will provide important points in CCQE total cross section data and mostdirectly check MiniBooNE results

CCQE scattering measurement

Estimated errors on NUMI on-axis (low,med energy beam config) CCQE total cross section measurement, using same procedure:

all plots as function of reconstructed E_v (GeV)

Estimated errors for CCQE cross section measurements at E_{v} ~2 GeV in NUMI:

NUMI flux config	total cross section estimated error (%)
14mrad off-axis (SciNOvA)	12
on-axis, low-energy (MINERvA)	23
on-axis, medium-energy (MINERvA)	35

CCQE scattering and 2-N correlations

- Perhaps extra "strength" in CCQE from multi-nucleon correlations within carbon

(Martini et al PRC80, 065501, '09)-

- Related to neglected "transverse" response in noted in electron scattering? (Carlson et al, PRC65, 024002, '02)
- Expected with nucleon short range correlations (SRC) and 2-body exchange currents

CCQE total cross section

CCQE scattering and 2-N correlations

- multi-N correlation idea is gaining theoretical momentum
- eg:" Pionic correlations and meson-exchange currents in two-particle emission induced by electron scattering", J.E. Amaro, etal, Phys.Rev. C82 (2010) 044601
- e-scattering calculation

FIG. 1. MEC diagrams considered in the present study. Diagrams (a) and (b) correspond to the seagull, (c) to the pionic, and (d)–(g) to the Δ current, respectively.

FIG. 2. Correlation diagrams considered in the present study. Diagrams (a) and (b) correspond to the forward, and (c) and (d) backward contributions, respectively.

predicted transverse response (on Fe)

FIG. 3. (Color online) 2p-2h transverse response of 56 Fe at q=550 MeV/c. Three values of the parameter ϵ are shown. Thin solid lines, correlation only; dotted lines, MECs only; thick solid lines, total; dashed, RFG OB results.

CCQE scattering and 2-N correlations

- Also, recent results from e-scattering suggest 20% of nucleons in carbon are in a "SRC state"

(R. Subedi etal, Science, 320, 1476 (2008))

This effect should result in distinguishable final states of multiple recoil nucleons.

Can be experimentally tested with SciNOvA.

Measuring 2-nucleon correlations

- A search for 2 nucleon correlations with SciNoVA is experimentally feasible and would provide the most direct test for MiniBooNE results.

Sketch of experimental method:

- Following method of JLab Hall A experiment:

- Find CCQE scattering events with 2 high-momentum recoil nucleons.
- Use transverse kinematics to eliminate neutrino energy unknown (all longnitudinal)
- look for transverse momentum balance when both nucleons considered.
- Separated from more mundane CCQE, $CC\pi$ events where energy should be shared with unobserved particles and recoil nucleus.
- Modeled with assumed extra 30% 2N events.

Measuring 2-nucleon correlations

Experimental search with SciNOvA (continued)

- look at $\cos \gamma$, angle between 2 nucleons

event totals past 2-N cuts

- Resulting, signal/background ~ 3...
- a sensitive search for this process
- and an important experimental constraint.

event type	events/10ton/6E20
2-nucleon signal	4119
CCQE 1-nucleon background	65
QElike background	1320
total background	1384

NC photon production

- MiniBooNE low-energy excess has spurred work on a possible background: NCγ production
- important background for $v_{\underline{a}}$ appearance searches
- eg: R. Hill, Phys. Rev. D 81, 013008 (2010) and e-Print: arXiv:1002.4215 [hep-ph]

TABLE I: Single photon and other backgrounds for Mini-BooNE ν -mode in ranges of $E_{\rm QE}$. Ranges in square brackets are the result of applying a 20-30% efficiency correction.

process	200-300	300-475	475-1250
1γ , non- Δ	85[17 - 26]	151[30, 45]	159[32, 48]
$\Delta \to N\gamma$	170[34 - 51]	394[79 - 118]	285[57 - 86]
$\nu_{\mu}e \rightarrow \nu_{\mu}e$	14[2.7 - 4.1]	20[4.0 - 5.9]	40[7.9 - 12]
$\nu_e n \to e p$	100[20 - 30]	303[61 - 91]	1392[278 - 418]
MB excess	45.2 ± 26.0	83.7 ± 24.5	22.1 ± 35.7
MB $\Delta \to N\gamma$	19.5	47.5	19.4
MB $\nu_{\mu}e \rightarrow \nu_{\mu}e$	6.1	4.3	6.4
MB $\nu_e n \to e p$	19	62	249

FIG. 1. Generalized Compton scattering.

FIG. 2. Meson-exchange contribution to $Z^*N \to \gamma N$.

FIG. 3. Production of photons through the Δ resonance.

NC photon production

- more and recent work on this:

"Weak Pion and Photon Production off Nucleons in a Chiral Effective Field Theory", B. Serot, X. Zhang, arXiv:1011.5913 [nucl-th]

- related to and constrained by π production
- antineutrino predictions also

Fig.1: Feynmann diagrams for pion production. Change the outgoing pion line to photon line for photon production. C indicates both vector and axial vector currents.

$E_{QE}(\mathrm{GeV})$	[0.2,0.3]	[0.3,0.475]	[0.475,1.25]
coh	3.1	10.37	5.59
incoh	$6 \times (1.01 + 1.01)$	$6 \times (3.64 + 3.62)$	$6 \times (2.90 + 2.88)$
total	15.22	53.93	40.27
MiniBN	19.5	47.5	19.4

Tab.1: NC photon production event's EQE distribution in MiniBooNE for neutrino scattering.

Measuring NC photon production

- a measurement is accessible in SciNOvA (along with important NC π^0 channel)

$NC\pi^0$ event in scibar/SciBooNE

NC γproduction

 $NC\pi^0$ production

Measuring NC photon production

- SciNOvA event rates
- ~ equal to full MiniBooNE neutrino sample (but in 10 tons).
- NCγ cross sections are calculated to be O(10⁻³) that of CCQE (from Hill or Serot/Zhang)
- resulting in sample of O(100) events in MB (same as 0.1% oscillations)
- SciNOvA will collect O(100) events of this type if calculations are correct
- photon recon down to ~100MeV and comparison with NC π^0 channel allows a measurement of NC γ
- together with NC π^0 channel will lend crucial info to v_e appearance search (NOvA and others)

SciNOvA v kevent/yr (6E20POT) in 10 ton fiducial vol

	Charged-current	Neutral-current
elastic	220	86
resonant	327	115
DIS	289	96
coherent	8	5
total	845	302
$\nu + A \to \pi^0 + X$	204	106

photon energy in NCπ⁰ event in scibar/SciBooNE

Figure 6.4: $E_{\gamma 1}^{rec}$ and $E_{\gamma 2}^{rec}$ before the π^0 mass cut $(E_{\gamma 1}^{rec} > E_{\gamma 2}^{rec})$

More neutrino scattering channels

Other neutrino scattering channels to be measured with SciNOvA:

- v_{μ} NC production of neutral pions
 - very important oscillation background
 - sizeable coherent production?
 - narrow band beam offers lower background from higher energies
- v_{μ} neutral-current (NC) elastic (NCeI)
 - important complementary channel to CCQE
 - extra contributions to axial form factor from strange quarks?
- $\nu_{_{\mu}}$ CC production of $\pi^{\scriptscriptstyle{+}}$, $\pi^{\scriptscriptstyle{0}}$
 - insight into models of neutrino pion production via nucleon resonances

 $NC\pi^0$ production

NC elastic

Application to NOvA

NOvA will conduct v_e and \overline{v}_e appearance search to probe θ_{13} , mass hierarchy, CP phase δ

- Among most important questions in neutrino and particle physics today and central in FNAL intensity-frontier program.
- $\sin^2 \theta_{13}$ sensitivity down to 0.01 at 90% CL
- with estimated $\nu_{\rm e}$ efficiency ~35% and NC, ν_{μ} CC background mis-ID probabilities ~ 0.4%, 0.1%
- Any additional tests of these numbers will be extremely valuable for NOvA
- The fine-grained SciNOvA detector can provide this.

21

Application to NOvA

- A double-scan method comparing SciNOvA and NOvA-near can provide signal efficiency and background misID probabilities.
- ala bubble chamber double-scans to measure scanner efficiencies

Method:

- Classify events labeled as signal/bckgd in SciNOvA compared to those resampled with larger pixel size (as NOvA) Nss, Nsb, Nbs, Nbb
- can then determine NOvA efficiency, $\epsilon_{_{\! N}}$ and NOvA, SciNOvA misID probabilities: $\gamma_{_{\! N}}, \ \gamma_{_{\! SN}}$
- results in a <3% (relative error) cross check of $\varepsilon_{\rm N}$, $\gamma_{\rm N}$, $\gamma_{\rm SN}$ at 3σ .
- a sensitive cross check!

test case simulated event totals in 1-yr SciNOvA running

	N_{ss}	N_{sb}	N_{bs}	N_{bb}	χ^2
Nominal	15500	50300	66600	10867600	_
γ_N higher by 10%	-	-	+4300	-4300	279
γ_N and γ_{SB} higher by 10%	-	+2200	+4300	-6500	371
B higher by $10%$	-1500	-2800	-2300	+6600	403

SciNOvA current status

- Presented to FNAL PAC, 11/10 recommended that NOvA consider SciNOvA
- The NOvA collaboration supports the SciNOvA physics case and is seriously evaluating it as a possibility. Study group consisting of NOvA and non-NOvA physicists recently formed to answer remaining technical questions.
- Final decision by NOvA hinges on:
 - People power
 - Earned contingency. Maybe ~1 year before NOvA knows if it has earned enough contingency to complete SciNOvA

Conclusions

- The addition of the SciNOvA detector to the NOvA near detector in the narrow-band beam would increase the NOvA physics program substantially for modest investment.
- This will allow:
 - new insight into neutrino scattering, particularly follow-up on the interesting and unexplained MiniBooNE neutrino cross section results.
 - important cross checks of backgrounds for the flagship NOvA v oscillation program.

extra slides

SciNOvA: costs

Total project costs:

- FNAL costs:
 - those involved with scibar support structure, rigging, underground installation.
 - costs based on recent SciBooNE/SciBar experience
- scint extrusions costs estimate from A. Pla-Dalmau
- all labor, engineering, DAQ programming (excluding physicists) included
- Intend to seek outside funding for non-FNAL costs
- Total: \$2.41M

SciNOvA project cost estimate

			est FNAL
lkana	t- (¢)	+-+-l-(¢)	
ltem	costs (\$)	totals(\$)	costs (\$)
scibar		804818	
extrusions: 15k 3m strips, 2.5cmx1.3cm	410218		
WLS fiber: 48km@\$2/m	192000		
fiber/PMT cookie assemblies	25000		
fabricate new scibar cradle	120000		120000
HVAC system	8000		8000
material and fab for assembly, lifting jigs	24000		24000
labor: assembly rigging	25600		25600
IRMs		1465770	
assembled boards: 250	1106028		
clock board system	3380		
IRM power system	26212		
DAQ computer/enet hardware	40000		
elec design/testing/debug for IRMs	87900		
mechanical design for IRMs	58600		
final board assembly, repair	37400		
DAQ firmware, software	106250		
detector installation		141800	
engineering	51200		51200
rigging	25600		25600
material and fab for installation, lifting jig	30000		30000
misc underground infrastructure	35000		35000
project total	33000	2412389	319400

SciNOvA: costs

IRM readout board cost breakdown

		costs			
IRM component	qty	each	total		
assembled PCB with components	250	\$2,515.00	\$628,750		
integrated HV supply	250	\$32.63	\$8,158		
MAPMTs	250	\$1,600.00	\$400,000		
PMT base PCB assembly	250	\$95.00	\$23,750		
PMT mounting parts, ribbon cable	250	\$142.84	\$35,710		
chasis mounting parts, connectors	250	\$15.71	\$3,928		
Fans	250	\$22.93	\$5,733		
total IRM costs			\$1,106,028		
cost/board			\$4,424		
cost/channel			\$69.13		

- Total: ~\$2.4M

COST ESTIMATE FOR SCINOVA

Requested by Mark Messier at Indiana University Prepared by Anna Pla-Dalmau Date: May 13, 2010 SciBar scintillator extrusions cost estimate

IMPORTANT: PROJECT WILL BE BILLED AT ACTUAL COSTS. THIS IS AN ESTIMATE.

Scintillator bars with titanium dioxide coating with one hole for a WLS fiber. 2.5 cm x 1.3 cm at 300 cm

Total amount of scintillator: 36,000 m (12,000 strips)

	Estimated Materials and Services Cost (\$)	Estimate d Time (hours)	Rate (hours)	Estimated Labor Cost (\$)	Total Estimated Cost Materials and Labor (\$)
R&D Material	640,000,00				
Die	\$10,000.00				
Polystyrene pellets (1,480 Kg @ \$2.65 each) Dopants (34 bottles @ \$190 each)	\$3,922.00				
Titanium dioxide pellets (40 Kg @ \$7.85 each)	\$6,460.00 \$314.00				
Nitrogen gas (10 LN ₂ dewars @ \$126 each)					
3 3 1 2 3 1	\$1,260.00				
Consumables (jars, labels, QC tools,)	\$1,000.00				
R&D Labor					
Extrusion preparation and operation		120	\$60.00	\$7,200.00	
Extrusion assistance	\$3,400.00		\$34.00		
Extrusion assistance and QC		60	\$35.00	+-,	
Set-up and tear-down (half-day each, 2 people)		20	\$60.00	\$1,200.00	
Production Material					
Polystyrene pellets (14,800 Kg @ \$2.65 each)	\$39,220.00				
Dopants (340 bottles @ \$190 each)	\$64,600.00				
Titanium dioxide pellets (400 Kg @ \$7.85 each)	\$3,140.00				
Nitrogen gas (50 LN ₂ dewars @ \$126 each)	\$6,300.00				
Consumables (jars, labels, QC tools,)	\$1,500.00				
Production Labor					
Extrusion preparation and operation		800	\$60.00	\$48,000.00	
Extrusion assistance	\$14,960.00	440	\$34.00		
Extrusion assistance and QC		400	\$35.00	\$14,000.00	
Project coordination		80	\$65.00	\$5,200.00	
Set-up and tear-down (half-day each, 2 people)		20	\$60.00	\$1,200.00	
Crating and Shipping					
Crate - 12 wooden crates	\$3,600.00			\$3,600.00	
Shipping*	\$6,000.00				
Extrusion Equipment Maintenance	\$3,000.00				
Estimated Direct Cost	\$168,676.00			\$82,500.00	\$2 51,176.00
FNAL Indirect Charges (14.4% M&S)	\$24,289.34				\$24,289.34
FNAL Indirect Charges (63.89% Labor)				\$52,709.25	
TOTAL Estimated Cost					\$328,174.59

^{*}This is an estimate.

SciNOvA: schedule

SciNOvA project schedule:

- assumed start in Fall '11, ready Aug '13 (23mos)
- SciBar extruded, assembled at FNAL
- readout board, PMT, fiber interface work at collaborating institutions and with vendors

Science case: CCQE scattering

Estimated errors on MiniBooNE CCQE total cross section measurement

- check of method with MiniBooNE
- underestimates error slightly off flux peak due to naive treatment of flux error

SciNOvA SBNW11, 5/11 29